Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Bioengineering (Basel) ; 10(3)2023 Mar 22.
Article in English | MEDLINE | ID: covidwho-2273527

ABSTRACT

Antibodies are key proteins of the immune system, and they are widely used for both research and theragnostic applications. Among them, camelid immunoglobulins (IgG) differ from the canonical human IgG molecules, as their light chains are completely missing; thus, they have only variable domains on their heavy chains (VHHs). A single VHH domain, often called a nanobody, has favorable structural, biophysical, and functional features compared to canonical antibodies. Therefore, robust and efficient production protocols relying on recombinant technologies are in high demand. Here, by utilizing ecotin, an Escherichia coli protein, as a fusion partner, we present a bacterial expression system that allows an easy, fast, and cost-effective way to prepare nanobodies. Ecotin was used here as a periplasmic translocator and a passive refolding chaperone, which allowed us to reach high-yield production of nanobodies. We also present a new, easily applicable prokaryotic expression and purification method of the receptor-binding domain (RBD) of the SARS-CoV-2 S protein for interaction assays. We demonstrate using ECD spectroscopy that the bacterially produced RBD is well-folded. The bacterially produced nanobody was shown to bind strongly to the recombinant RBD, with a Kd of 10 nM. The simple methods presented here could facilitate rapid interaction measurements in the event of the appearance of additional SARS-CoV-2 variants.

2.
J Chem Inf Model ; 62(16): 3844-3853, 2022 08 22.
Article in English | MEDLINE | ID: covidwho-1947179

ABSTRACT

On 26 November 2021, the WHO classified the Omicron variant of the SARS-CoV-2 virus (B.1.1.529 lineage) as a variant of concern (VOC) (COVID-19 Variant Data, Department of Health, 2022). The Omicron variant contains as many as 26 unique mutations of effects not yet determined (Venkatakrishnan, A., Open Science Framework, 2021). Out of its total of 34 Spike protein mutations, 15 are located on the receptor-binding domain (S-RBD) (Stanford Coronavirus Antiviral & Resistance Database, 2022) that directly contacts the angiotensin-converting enzyme 2 (ACE2) host receptor and is also a primary target for antibodies. Here, we studied the binding mode of the S-RBD domain of the Spike protein carrying the Omicron mutations and the globular domain of human ACE2 using molecular dynamics (MD) simulations. We identified new and key Omicron-specific interactions such as R493 (of mutation Q493R), which forms salt bridges both with E35 and D38 of ACE2, Y501 (N501Y), which forms an edge-to-face aromatic interaction with Y41, and Y505 (Y505H), which makes an H-bond with E37 and K353. The glycan chains of ACE2 also bind differently in the WT and Omicron variants in response to different charge distributions on the surface of Spike proteins. However, while the Omicron mutations considerably improve the overall electrostatic fit of the two interfaces, the total number of specific and favorable interactions between the two does not increase. The dynamics of the complexes are highly affected too, making the Omicron S-RBD:ACE2 complex more rigid; the two main interaction sites, Patches I and II, isolated in the WT complex, become connected in the Omicron complex through the alternating interaction of R493 and R498 with E35 and D38.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Humans , Mutation , Peptidyl-Dipeptidase A/chemistry , Protein Binding , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
3.
ACS Chem Biol ; 17(4): 969-986, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-1773917

ABSTRACT

MASP-1 and MASP-2 are key activator proteases of the complement lectin pathway. The first specific mannose-binding lectin-associated serine protease (MASP) inhibitors had been developed from the 14-amino-acid sunflower trypsin inhibitor (SFTI) peptide by phage display, yielding SFTI-based MASP inhibitors, SFMIs. Here, we present the crystal structure of the MASP-1/SFMI1 complex that we analyzed in comparison to other existing MASP-1/2 structures. Rigidified backbone structure has long been accepted as a structural prerequisite for peptide inhibitors of proteases. We found that a hydrophobic cluster organized around the P2 Thr residue is essential for the structural stability of wild-type SFTI. We also found that the same P2 Thr prevents binding of the rigid SFTI-like peptides to the substrate-binding cleft of both MASPs as the cleft is partially blocked by large gatekeeper enzyme loops. Directed evolution removed this obstacle by replacing the P2 Thr with a Ser, providing the SFMIs with high-degree structural plasticity, which proved to be essential for MASP inhibition. To gain more insight into the structural criteria for SFMI-based MASP-2 inhibition, we systematically modified MASP-2-specific SFMI2 by capping its two termini and by replacing its disulfide bridge with varying length thioether linkers. By doing so, we also aimed to generate a versatile scaffold that is resistant to reducing environment and has increased stability in exopeptidase-containing biological environments. We found that the reduction-resistant disulfide-substituted l-2,3-diaminopropionic acid (Dap) variant possessed near-native potency. As MASP-2 is involved in the life-threatening thrombosis in COVID-19 patients, our synthetic, selective MASP-2 inhibitors could be relevant coronavirus drug candidates.


Subject(s)
Mannose-Binding Protein-Associated Serine Proteases , Peptides , Disulfides , Humans , Lectins , Mannose-Binding Protein-Associated Serine Proteases/antagonists & inhibitors , Mannose-Binding Protein-Associated Serine Proteases/chemistry , Peptides/chemistry , Peptides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL